Thursday, December 29, 2011

Elddis Caravan Reviews - The New Tempest

!±8± Elddis Caravan Reviews - The New Tempest

Looking for something roomy to accommodate a large family? Looks like the Elddis Crusader Tempest caravan could be just the ticket.

It looks like the triple-fixed-bunk set-up is here to stay: the Tempest is the latest player to have its name added to an ever-lengthening team sheet that includes offerings from Bailey (first name on the list), Swift, Lunar, Adria and the Crusader's room mate, the Avante.

Arguably, the Tempest is the most imposing of the three-bunk six-berth contingent. The top-of-the-range Crusader is a big old beast, needing twin axles to accommodate the 20-foot-plus interior length. That's space enough for a full-size lounge at the front and a separate shower cubicle in the washroom.

Phew... There's a lot to get round, then. Better get on with it.

Construction

You could have a torrid time with assorted doors in the Tempest, the worst offender being the entrance door, which left me stranded outside when its notchy handle refused all polite requests to disengage from the latch fully, despite being completely unlocked.

Eventually, I gained entry by distinctly impolite means, and thenceforth kept the keys in my pocket every time I left the caravan. It repeated the same trick once, then behaved better - but always felt sticky.

Inside, the washroom door has one of those new breed of domestic-style handles, but it was already coming loose and didn't engage properly. The push-button release on the wardrobe door reminded me why I don't really like push-buttons: I pushed and, for a long time, it didn't release. Eventually, it admitted defeat but was still prone to bouts of stubbornness. If this one can be classified as a minor niggle, the other two would be unacceptable on any caravan, never mind one costing as much as this.

The quality of the joinery elsewhere on board is very good, with the nice, thick woodwork reminding you that you are, after all, in a top-of-the range caravan. Outside, the panels are joined to one another neatly and precisely

Towability

By the time you've decided to make a six-berth on a twin axle and kit it out with most of the available goodies as standard, there's little point in watching the pounds and ounces - you may as well have that second jumbo jam doughnut and be done with it.

So it is, then, that the Tempest weighs in at just under 1900kg if you take full advantage of the available payload. Nothing this side of a Land Cruiser, Pathfinder or
Discovery 4 will suffice. But, busy high streets and sweaty-palm-narrow site entrances notwithstanding, a massive outfit such as this will be superb on the road, with eight wheels providing well-planted roadholding, suspension dampers helping to smooth out the bumps and the standard hitch stabilizer providing that extra hand on the tiller. My friends old Discovery V8 made light work of it but, then again, I'd have been gutted if it didn't...

The two rear foglights and a pair of reversing lamps are sensible fitments.

Usability

My guess is that it must be great fun working in the Usability Department up at Elddis Towers. These guys consistently come up with ideas that make it all the way onto the finished product.

For example, a caravan's front lounge is often left 'exposed' when converted into a bedroom at night, but not here: a pull-out concertina blind shuts it off completely to give the occupants on either side of the divide a bit of privacy. It also means the lounge can be pressed into service as a changing/dressing room, a task it's much more suited to than the elbow-bashing confines of the washroom.

Something else: there are two mains sockets in the kitchen, so the kettle and the toaster can be plugged in at the same time. There's another mains socket under the fridge that provides power to the bedroom: handy for charging up the mobile overnight

The exterior gas barbecue point is a fine addition on a family holiday machine such as this; and the hinged, slatted bases of the two lower fixed bunks lift up out of the way to give a vast storage area when they're not in use. The awning warmer is basically an exterior-wall outlet for the blown-air heating system. But don't dismiss it as a gimmick if you've never experienced it: it's enough to make a difference in the cooler days of spring or autumn.

Never mind cooler days: if you use the Tempest in the dog days of winter, you'll be glad of the 40-litre inboard water tank, which removes any worry of your water supply freezing up overnight.

The so-called privacy glass on the side windows isn't misnamed: if you want to sneak a look inside this one as you walk past on site, you'll need to press your nose right up against the window.

But the highlight here is the presence of the 'proper' side dinette that offers genuine seating for four (maybe not four full-sized adults, mind), not to mention a terrific single bed that easily trumps the bunks for space and comfort. It's no big deal to transform it from bed to seating in the morning, either.

Storage is first-class. Wide-opening hatches provide easy access to the front bedlockers, and there's exterior access to the nearside one, too: open that hatch and you'll find a mains socket for use in the awning.

Each seat base in the side dinette also has a handy door, making it fuss-free to get to the very useful space in here, too. The wardrobe at the back is good and deep, with plenty of hanging space.

The carpeting is provided in loose-fit sections, an absolute necessity in a caravan that will no doubt have more than its fair share of muddy trainers and wellies to contend with. The big centre section is a bit unwieldy, mind: dividing it into two would make it much more user-friendly

Living And Sleeping

The triple fixed bunks mean that much of the chore of bed making on holiday is removed: indeed, if you're using the Tempest as a four- or five-berth and the kids are all happy to claim one of the bunks each that only leaves the front double to attend to. If Mum and Dad are happy to take advantage of the long lounge and use single beds instead of hauling out the slats to make the huge double, the chore is all but eliminated completely.

Each bunk occupant benefits from a 12V reading light and privacy curtain, but the person in the uppermost one loses out on a window. Other makers see fit to oblige, so it's a strange omission here.

They're fine beds: on the basis of my trying out the bottom one, the mattresses are firm and supportive, and there's room enough to toss and turn. The windows are sited so that their infrastructure doesn't get in the way of shoulders or elbows.

The wider-than-usual side dinette makes up into a luxurious single bed that allows the luxury of sprawling. The base is formed by slotting the clip-on table top between the seats. A curtain for a bit of bedtime privacy would be a useful addition, though.

The washroom is directly opposite the bunks, so it's effectively an en-suite facility for the bedroom.

The front lounge transforms into great sleeping quarters, whether in single- or double-bed mode: the sprung upholstery is deep and supportive, giving all-night-long comfort. Slats glide in and out effortlessly to make the double. Pull the concertina blind across and you really feel that you, too, have your own proper bedroom.

Just as much care and attention have been lavished on the lounge to make it a fine place to be during the waking hours: sink into those substantially upholstered front comers and you'll find them every bit as comfortable as they look. There's enough room here for six, but why cram everybody in when there's such good seating available in the side dinette? With two dining here, everybody on board will be able to wallow in space and comfort.

Kitchen

Elddis kitchens are always impressive and this one's no exception. There's an enormous amount of storage, divided among lockers, drawers and a huge cupboard under the sink. A respectable amount of work surface has been designed in, and there's always the possibility of using either the hefty chinchilla glass covers of either the sunken sink or hob.

These now-familiar covers are heat, scratch and stain-proof. With three gas burners (one of which is supersized), a grill, oven and microwave, cooking dinner for six should be easily achievable. The wall-mounted Thetford fridge with totally separate freezer, directly opposite the cooker, is a real tour de force - stylish and, with plenty of capacity, immensely practical.

I can think of just one reason to mark this impressive kitchen down, and it's the usual - one little striplight over the sink just isn't good enough for a kitchen this size.

Wash Room

Once you're past the disappointment of the door, things start to look up. The mirror-fronted cabinet takes care of storage - that 'cupboard' under the basin is actually a bijou linen basket. The wash hand basin has been attacked by the mastic gun: generous sealing is one thing, but there's so much of it here, it looks untidy. There's a carpet section in here - loose-fit, thankfully, so it can be whipped out.

The washroom is nice and spacious. Sensibly, the separate shower compartment is at the back of the room, so doesn't put the wc or basin out of commission if it's being used. This is a nice facility - spacious and with sensible provision for gel and shampoo.

Lighting and Electrics

Two wall lights in the front comers, four reading lights, four downlighters surrounding the sunroof binnacle and two 'mood-lighting' strips. That's the lighting allocation... for the front lounge. Strewth! Suffice it to say, you won't run short of illumination, unless you're trying to see what's occurring on the hob after dark. The mood lighting is hidden under the overhead lockers on either side of the lounge and in the side dinette. It doesn't give out much light by itself, but with so many other lighting options at your disposal, you can dial in whatever ambience you fancy of an evening.

There are another four downlighters surrounding the second sunroof in the middle of the caravan, two reading lights in the side dinette, one for each of the bunks, a downlighter over the mirror outside the washroom and no fewer than three in the washroom itself. Let there be light? I should cocoa.

Let there be power, too - there are five mains sockets inside, two of which are accompanied by aerial/12V sockets to give you a choice of TV viewing locations. As mentioned, the bedroom is connected to the mains, too, although its semi-hidden location under the fridge had me foxed at first.

All the controls are where they should be for ease of access, putting the seal on a thoroughly well-connected caravan.

Verdict

The Tempest's build quality concerns are very out of keeping for an Elddis: none the less, I'd be less than elated to encounter them if I had just taken delivery of a vehicle costing nearly 21 grand (sterling). In virtually all other regards I'd be chuffed to bits: it's spacious in every area, smartly turned-out and really makes the most of what is a terrific layout.


Elddis Caravan Reviews - The New Tempest

Cheaper Playtex 4422

Sunday, December 25, 2011

Twin Size Bed Slats - Detached Bunkie Boards

!±8± Twin Size Bed Slats - Detached Bunkie Boards


Rate : | Price : | Post Date : Dec 25, 2011 22:16:33
Usually ships in 1-2 business days

These are new in our stock! These are twin size bunkie board / bed support slats that eliminates the need for a link spring! They provides support so that you can use a regular mattress on a twin size bed rather than having to purchase expensive link spring or box spring. ATTENTION: Our new shipment of slats are made of harder plywood. The slats are 2 1/4" wide and are spaced 3" apart from one another.The dimensions are 39" (give or take 1/16") wide X 75" long. Please measure your bed to ensure that these slats will fit before you purchase.

Good Bargain Cream Puff Filling Recipes Tumi 22020 Sale Coupon Miele Power Head

Tuesday, December 20, 2011

Closer Look: Twin over Full Log Bunk Bed with LogFurniturePlace.com

Jason with JHE's Log Furniture Place gives a closer look and shows some of the benefits found on the Rustic Lakeland Twin over Full Log Bunk Bed. This rustic bunk bed (Lakeland Mills model # BBTD538) is one of thousands of cabin furniture and decor pieces that can be found on our website www.logfurnitureplace.com which currently features free shipping.

Steam Room Vs Sauna On Sale Catalog Electric Toothbrush Oral B Trundle Beds Full Size Buy Online

Friday, December 16, 2011

Explorer Full Full Mission Bunk w/ Trundle Reviews

Clik this link to view details - goo.gl - Explorer Full Full Mission Bunk w/ Trundle Reviews Explorer Full Full Mission Bunk w/ Trundle: Desk Hutch & Chair, TV Stand, 4 Drawer Chest *Mattress not included Accommodates 8" mattress height. Meets ASTM Specifications F1427-07 and CPSC:16 CFR Parts 1213, 1500, and 1513. Mattress ready: Complete webbed slat kit included. No foundation required. Desk Dimensions: 45.25 x 23.25 x 30.5"H Hutch Dimensions: 45.25 x 9" x 5"H TV Stand Dimensions: 30 x 17 x 25.25"H 5 Drawer Chest Dimensions: 30 x 17 x 43"H Clik this link to view details - goo.gl

Buy Buckwheat Pillow

Saturday, December 10, 2011

Wednesday, December 7, 2011

The McDonnell Douglas MD-11

!±8± The McDonnell Douglas MD-11

I

The McDonnell-Douglas MD-11, intended successor to its earlier DC-10 and the third widebody tri-jet after the DC-10 itself and the Lockheed L-1011 TriStar, traces its origins to the General Electric and Pratt and Whitney engine competition to provide a suitable powerplant for the Lockheed C-5A Galaxy military transport, resulting in the first high bypass ratio turbofan, while the DC-10, the result of American Airlines' 1966 requirements for a 250-pasenger transcontinental airliner, had been built in five basic versions, inclusive of the DC-10-10, the DC-10-15, the DC-10-30, the DC-10-40, and the KC-10 Extender, achieving an ultimate production run of 446. Program cost overruns had intermittently necessitated the Douglas Aircraft Company's merger with McDonnell, hitherto a military aircraft manufacturer, in order to ensure survival of both the company and its aircraft.

Douglas design studies for both narrow and widebody successors, powered by high bypass ratio turbofans and accommodating 150 passengers, had been initiated as far back as the late-1970s. Although no definitive aircraft program had, in the event, been launched, detailed market analysis, along with new technological research, would later prove valuable to the eventual design. The 60 orders for the KC-10 had enabled Douglas to maintain the basic DC-10 production line longer than it would have if it had only relied on commercial orders, thus delaying the need for a replacement. Yet, because it would be based upon its earlier-generation counterpart, it could proceed through its definition and design phase far more rapidly than the later, competing Airbus A-340 and Boeing 777, entering the market earlier than these aircraft and tapping into an existing DC-10 customer base for potential sales.

Unlike that aircraft, however--whose five basic versions had shared the same fuselage length and cross-section--the projected successor of 1979 had featured a 40-foot fuselage stretch capable of accommodating 340 mixed-class passengers, three General Electric CF6-50J turbofans producing 54,000 pounds of thrust each, a strengthened wing, and a 630,000-pound gross weight.

The resultant DC-10-60, paralleling the earlier, stretched, long-range DC-8-60 series, had offered a 75-passenger increase over the DC-10s of Air New Zealand and Swissair who had been targeted as potential launch customers, but use of the existing wing had severely eroded performance, and five-foot extensions, coupled with a new wing fillet and active ailerons to reduce gust loads, had considerably improved it. Indeed, revised trailing edge flaps and a larger tailcone had resulted in a 24-percent fuel reduction over that of the DC-10 and its seat-mile costs had been lower than those of the four-engined Boeing 747.

Program launch, intended for 1979, had been usurped by Douglas's further definition of its versions, which, designated "DC-10-61," "DC-10-62," and "DC-10-63," had even more closely reflected the DC-8-61, DC-8-62, and DC-8-63 nomenclatures. The DC-10-61, for instance, had been intended as a domestic variant with the 40-foot fuselage stretch and a 390-passenger capacity, and had been powered by 60,000 thrust-pound engines. The DC-10-62, with a reduced, 26.7-foot fuselage insertion, had been intended for very long-range operations, with a 14-foot wingspan increase, active ailerons, and a four-wheeled centerline main undercarriage unit. It had been intended to carry some 40 fewer passengers than the -61, while the -63 had combined the design features of both, resulting in a high-capacity, long-range variant.

A series of intermittent DC-10 accidents, none of which had been traced to an inherent design flaw, along with the prevailing economic recession, had precluded further Super DC-10 development at this time, although one of its features, eventually incorporated in its successor, had been flight-tested on a Continental Airlines DC-10-10 in August of 1981. Winglets, extending both above and below the wing tip, and varying in size, had resulted in a three-percent fuel reduction because of an equal decrease in generated drag.

Thus buoyed only by MD-80 sales, the Douglas Aircraft Company rode the recession. A projected DC-10 replacement, bearing an MD-11X-10 designation in 1984 and offering considerably more advancement than the original Super 60 series had, had been most closely based on the DC-10-30 with a 580,000-pound maximum take off weight, a 6,500-nautical mile range with a full payload, and either three General Electric CF6-80C2 or Pratt and Whitney PW4000 engines. A higher-capacity version, to be offered in parallel with the basic airframe, had featured a 22.3-foot fuselage stretch, to permit 331 mixed-class passengers to be carried over 6,000-mile ranges and had a corresponding 590,000-pound gross weight. American, Delta, Lufthansa, and Toa Domestic Airlines, considering this iteration, had suggested refinements which had later been incorporated in the definitive aircraft.

By the following year, the board authorized order solicitations, although both versions had, by this time, featured the same fuselage length, the medium-range variant, at a 500,000-pound gross weight, offering a 4,781-mile range, and the long-range counterpart, at a 590,000-pound gross weight, offering a 6,900-mile range. Accommodating some 335 passengers in a typically mixed arrangement, they introduced composite construction, a two-person cockpit, and an advanced electronic flight system.

At the time of official program launch, which had occurred on December 30, 1986, 92 orders and options had been placed by Alitalia, British Caledonian, Federal Express, Korean Air, SAS, Swissair, Thai Airways International, and Varig.

The MD-11, which had rolled out for the first time some three years later in September of 1989 in Long Beach, California, and had been registered N111MD, had been devoid of its engines, winglets, vertical stabilizer, and paint scheme, but displayed the logos of the 29 customers which had ordered or optioned the type by this time. As these surfaces had subsequently been added, however, it bore a close similarity to the DC-10-30 from which it had been derived.

Featuring an 18.6-foot stretch over that aircraft, attained by means of two fuselage plugs, it retained its nose and cockpit sections, but introduced an elongated, drag-reducing, chisel-shaped tailcone, and offered a 201.4-foot overall length when fitted with General Electric engines, or a 200.11-foot overall length with Pratt and Whitney powerplants.

The two-spar Douglas airfoil, built up of chordwise ribs and skins and spanwise stiffeners, featured a 169.6-foot span, a 35-degree sweepback at the quarter chord, and six degrees of dihedral, rendering a 7.9 aspect ratio and a 3,648-square-foot area. Low-speed lift was augmented by new, full-span leading edge slats and redesigned, double-slotted trailing edge flaps, while roll control was provided by inboard, all-speed ailerons made of metal with composite skins, and outboard, low-speed ailerons which drooped with the trailing edge flaps during take off and were entirely constructed of composite material. Each wing also contained five spoiler panels.

Fuel, carried in wing integral tanks, totaled 40,183 US gallons.

Up- and downward-extending winglets, installed on the wingtips themselves, had provided the greatest distinction to the DC-10. Harnessing the drag-producing vortex otherwise created by wingtip pressure differential intermixing, they had been comprised of a seven-foot, upward-angled section made of a conventional rib and spar, but covered with an aluminum alloy skin and completed by a carbonfibre trailing edge, and a 2.5-foot, downward-angled section made entirely of carbonfibre, collectively encompassing a 40-square-foot area.

Because of the increased moment-arm and computer-controlled longitudinal stability augmentation software, the MD-11's horizontal tail had been 30 percent smaller than that of the DC-10 and featured a 2,000 US gallon integral trim tank which increased range and facilitated in-flight center-of-gravity optimization. Its advanced, cambered airfoil, and reduced, 33-degree sweepback, coupled with an electromechanically-activated variable incidence tailplane fitted with two-section, slotted, composite trailing edge elevators on either side, resulted in a 1,900-pound structural weight reduction and decreased in-flight drag.

Power had been provided by three 62,000 thrust-pound General Electric CF6-80C2 or 60,000 thrust-pound Pratt and Whitney PW4462 high bypass ratio turbofans, two of which had been pylon-attached to the wing leading edge underside and one of which had been installed in the vertical tail aft of the fin torsion box. Tracing its origins to the 41,000 thrust-pound TF39 engine originally developed for the Lockheed C-5A galaxy, the former had evolved into the quieter, more advanced CF-6 intended for commercial operation, and its 40,000 thrust-pound CF6-6D had powered the domestic DC-10-10, while its 48,000 thrust-pound CF6-50C had powered the intercontinental DC-10-30, along with the Airbus A-300 and some versions of the Boeing 747. The even more advanced CF6-80A had also been chosen to power the A-310 and the 767.

Incorporating the CF-6's core, with a larger, 93-inch, two-shaft fan, the CF6-80C2 powering the MD-11 had offered 17-percent more thrust and had a bypass ratio of 5.05. Linked to a full authority digital engine control system, which itself had provided electronic autothrottle and flight management system interface, the turbofan had offered reduced fuel burn.

The alternative Pratt and Whitney PW4060, whose reduced length equally decreased the aircraft's overall length by five inches, had been the only other customer option. The Rolls Royce RB.211-524L Trent, briefly listed as a third alternative, had been specified by Air Europe for its 18 firm and optioned orders, but the financial collapse of its parent company had precluded its continued offering.

The hydraulically-actuated, tricycle undercarriage, like that of the DC-10-30, had been comprised of a twin-wheeled, forward-retracting nose unit; two quad-wheeled, laterally retracting main gear bogies; and a twin-wheeled, forward-retracting, fuselage centerline strut, all of which had featured oleo-pneumatic shock absorbers.

The MD-11 cockpit, significantly deviating from the DC-10's, had been operated by a two-person crew, the third, or flight engineer, position replaced by digital avionics and computerized flight control and management systems, while the Aircraft System Control, or ASU, had been comprised of five independent, dual-channel computers which automated all of his previous functions.

The passenger cabin, designed for flexibility, had incorporated seat, galley, lavatory, and garment closet installation on cabin length-running tracks whose one-inch increments facilitated multiple configurations and densities and rapid rearrangements, thus permitting carriers to operate the type on scheduled flights during the week and on high-density/charter services during weekends. Compared to the DC-10 cabin, the MD-11 featured light-weight side panels and seat assemblies; improved lighting; larger, restyled overhead storage compartments which tripled the per-passenger volume to three cubic feet; standard centerline bins aft of the second door; and provision for overhead crew rest beds.

A typical two-class, 323-passenger configuration had entailed 34 six-abreast first class seats at a 41- to 42-inch pitch and 289 nine-abreast economy class seats at a 33- to 34-inch pitch, while a three-class arrangement had included 16 six-abreast first class seats at a 60-inch pitch, 56 seven-abreast business class seats at a 38-inch pitch, and 221 nine-abreast economy class seats at a 32-inch pitch. Maximum capacity, in a ten-abreast, three-four-three configuration, had been 409.

The MD-11, with a 114,100-pound weight-limited payload, had a 602,500-pound maximum take off weight. Accommodating 298 three-class passengers, it had offered a 6,840-nautical mile range, including FAA-required reserves.

First taking to the skies on January 10, 1990 from Long Beach, the MD-11 had performed stability and control tests over Edwards Air Force Base, achieving a maximum altitude of 25,000 feet and a 300-knot speed before concluding a highly successful two-hour, 56-minute maiden flight. Three hundred fifteen orders and options had been received for the type by this time.

The certification program, which had entailed four General Electric CF6-80C2 and one Pratt and Whitney PW4460 powered airframe, had notched up several commercial tri-jet records, including a 9,080-mile flight from Anchorage, Alaska, on July 31, 1990, with the fourth prototype, which had remained aloft for 16 hours, 35 minutes.

Type certification had been achieved on November 8 for the CF6-80C2-powered version and December 19 for the PW4460 aircraft, while clearance had been given for Category IIIB landings the following April.

II

Finnair, the type's launch customer, had taken delivery of its first aircraft, registered OH-LGA, at a ceremony in Long Beach on November 29, 1990, and a representative intercontinental sector with this aircraft had been made two years later, in October of 1992.

Founded on November 1, 1923 by Bruno L. Lucander, the private carrier, then designated "Aero O/Y," had inaugurated service the following March to Reval, Estonia, with Junkers F.13 aircraft, before expanding to Stockholm, with an intermediate stop in Turku, in cooperation with Sweden's ABA. Finnish domestic route development, because of the country's profusion of lakes, had necessitated floatplane equipment, although post-1936 airport construction had enabled it to acquire two de Havilland Rapide Dragon biplanes and, later, two Junkers Ju.52/3ms.

Shortly after World War II-mandated flight suspension had been lifted, the fledgling airline, now 70-percent government owned and renamed "Aero O/Y Finish Air Lines," had reestablished its Helsinki-Stockholm sector and acquired nine DC-3s.

The 1950s, characterized by continental route system expansion and modern, Convair 340 aircraft acquisitions, had taken it to Dusseldorf, Hamburg, London, and Moscow from a steadily expanding Helsinki flight hub, and the type had been superseded by the slightly higher-capacity Convair 440.

The MD-11, powered by General Electric CF6-80C2D1F engines and configured for 58 business class and 278 economy class passengers, had been ordered to replace its DC-10-30s, and had first been deployed on the Helsinki-Tenerife route on December 29, 1990, to amass initial operating experience before being transferred to the North American and Far Eastern sectors for which it had been intended.

Its two MD-11s had operated the Helsinki-Tokyo and Helsinki-Bangkok-Singapore routes, while its DC-10-30s had continued to serve the New York and Beijing sectors.

The first, to Japan, had spanned 4,862 miles and had entailed a nine-hour, 35-minute block time, and had been operated by the first MD-11 to enter passenger-carrying service, OH-LGA.

The tall, dense trees surrounding Helsinki's Vantaa International Airport, still wearing their yellow and gold autumn coats, appeared diffused as the biting, 30-degree wind whirled snow flurries toward the geometric pattern of ramps, taxiways, and runways. The goliath, blue-trimmed Finnair MD-11 tri-jet, currently the only widebody on the white-dusted tarmac accompanied by a myriad of narrow body DC-9, MD-80, and 737-300 twinjets, was towed to Gate A-4 30 minutes before its scheduled, 1620 departure time amid the late-afternoon, diminished Nordic light.

The MD-11's two-person cockpit, a radical departure from the DC-10's, sported six eight-square-inch Cathode Ray Tube (CRT) glass display units, comprised of the duplicated Primary Flight Display (PFD), Navigation Display (ND), Engine and Alert Display (EAD), and Systems Display (SD) schematics, while the Automatic System Controllers, located on the overhead panel, were subdivided into sections for hydraulics, electrical, pneumatics, and fuel, each controlled by two independent computers. The Flight Control Panel (FCP) itself, located on the Glareshield Control Panel (GCP), featured controls for autopilot and flight director mode selections, as well as flight management system mode change controls, inclusive of speed (SPD), navigation (NAV), and profile (PROF).

The pending, trans-Siberian flight's departure and destination points, weights, moments, flight plan, take off runway (04), and take off performance calculations, obtained from the station-prepared load sheet, had been entered into the keypad-resembling Multifunction Control Display Unit (MCDU) located on the center pedestal between the two pilots. The flight's Standard Instrument Departure (SID) had subsequently been loaded into the flight management system during inertial reference system initialization.

The number three engine, the first to be started and the furthest from the bleed air source, had been engaged by pulling the Engine Start Switch, its start valve moving into the open position, as verified by an amber confirmation light. When the N2 compressor speed had equaled 15 percent, the start lever had been moved to the "On" position and the engine start switch, reflecting an exhaust gas temperature (EGT) of between 45- and 52-percent, had popped in, the start valve now closed and the amber light disilluminating. The engine's N1 tachometer had settled at 23-percent and its exhaust gas temperature had hovered at the 700 degree Fahrenheit mark. The sequence had then been repeated for the other two turbofans, followed by completion of the "After Start Checklist."

Tug-maneuvered from its nosed-in parking position, the MD-11, operating as Flight AY 914, had initiated its autonomous movement with an almost imperceptible throttle advancement, testing its flight surfaces and following Vantaa Ground Control taxi instructions.

Navigating the snow-patched, blue light-lined taxiways in virtual darkness, the lumbering tri-jet made a 180-degree turn on to Runway 04 with the aid of its nose wheel steering tiller, the nose wheel itself positioned so far behind the cockpit that the aircraft had been inched well beyond the strip's centerline before it had actually initiated the turn toward it, its elongated, wide fuselage following it in trailing mode. Full rudder deflection provided ten degrees of steering on the ground, while the nose wheel achieved up to 70 percent of left and right laterability.

Receiving take off clearance, the MD-11, sporting 25 degrees of trailing edge flap, had thundered into initial acceleration as its throttles, manually advanced to the 70-percent position, nourished its huge-diameter General Electric turbofans with a steady stream of fuel, as they swallowed massive quantities of cold air with each, increasingly faster fan rotation. The AUTOPILOT button, located on the Flight Control Panel and engaging the autothrottles themselves, computer-controlled the aircraft into its proper take off thrust setting, coupled with automatic engine synchronization.

Elevator-leveraged into a nosewheel-disengaging rotation, the tri-jet surrendered to the purple, snowflake-blurring dusk, its heavy fuel load exerting a wingtip-curving bending load and its wing leading edge light beams slicing through the obscurity as it climbed out over Runway 15 and the ground light splotches representing Helsinki. Retracting its tricycle undercarriage, the aircraft, whose pitch bars had indicated its correct climb attitude, had automatically adhered to its standard instrument departure course.

Arcing into a shallow right bank over the coast, Flight 914 retracted its trailing edge flaps, although its leading edge slats had remained extended until additional speed had been amassed. Engaging the navigation mode enabled the aircraft to fly its departure profile, while activating the autoflight system, coupled with the "NAV" and "PROF" buttons, ensured that it followed its route, climb, outbound radial, and either air traffic control-assigned or level-off altitude. Airspeed had been maintained at 250 knots below 10,000 feet, at which time it had been permitted to accelerate to 355 or beyond, and its leading edge lights had been retracted.

Surmounting one of many cloud decks, the aircraft crossed the Gulf of Finland, whose dark purple surface had been separated from the horizon by a diffused band of chartreuse light. Increasingly encased in howling slipstream, it passed over the coast of the former Soviet Union at a 472-knot ground speed, flying southwest of St. Petersburg in black skies which had been traced by a thin, glowing orange line on its western horizon, now located behind its left wingtip, as it settled into its initial, 33,000-foot plateau at a 509-knot ground speed, destined for the Ural Mountains and Siberia.

The passenger cabin, sporting diagonal-patterned, light and dark blue upholstery, had featured six rows of seven-abreast, two-three-two, configured business class seats in the forward section, followed by another three aft of the second cross aisle. Economy class seating, entirely in a ten-abreast, three-four-three, arrangement, had included nine rows behind the business class, and 21 in the aft cabin, running between the third and fourth cross aisles.

Dinner in the latter, according to its bilingual English and Japanese menu (which, in October of 1992, had ironically featured an in-flight profile of one of Finnair's DC-10-30s), had included a selection of aperitifs, beer, wine, and nonalcoholic beverages served with lightly salted peanuts and smoked almonds; a crabmeat and mushroom seafood salad on a lettuce bed with jumbo shrimp, sliced cucumbers, and cherry tomatoes; a basket of hot white and wheat rolls with Finnish butter; mango beef or chicken in curry-coconut cream sauce; French camembert cheese with crispy rye crackers; raspberry mousse cake; coffee or Japanese tea; a selection of liqueurs; after-dinner mints; and hot towels.

Maintaining a 567-knot ground speed, the MD-11 penetrated the minus 62-egree tropopause at a three-degree nose-high attitude, passing southeast of Arkhangelsk over the frozen Siberian tundra, with seven hours, 30 minutes remaining on its flight plan. Thinning cloud layer, appearing like sheathing veils, revealed periodic orange and white, population center-represented pearls steadily moving beneath the protruding, massive-diameter turbofans as they propelled it toward Adak and thence south of Naryan-Mar.

Oblivious o the passengers, the upper and lower winglets delayed the otherwise vortex-created wingtip pressure differential intermixing, reducing drag, while the horizontal stabilizer-located trim tank had enabled the aircraft to shift its center-of-gravity rearward, toward its 34-percent aft design limit, further reducing drag and coincident fuel burn by 2.7 percent. The type had standardly operated within a 29- to 32-percent range.

Flight 914's flight plan progress, indicated by a series of position and ground speed readings, had been the result of the IRU's position and velocity coordination with VHF omni-directional radio range (VOR) and distance measuring equipment (DME) stations between Finland and Japan. The Flight Plan (F-PLN) display selected on the MCDU yielded the aircraft's position and waypoints aligned in a vertical manner on the screen, with the estimated times beside them, along with speed and altitude, listed as "Position," "Estimated Time Overhead" (ETO), "Speed" (SPD), and "Flight Level" (ALT).

Passing over Irkutsk, the Yabblonovyy Mountain Range, and Tsitisihar, the aircraft moved ever eastward, toward Vladivostock.

Slicing the darkness and opening day in the Orient, dawn's razor pierced the eastern horizon with a thin cut through which an orange glow had poured ahead of the port wing, somehow emphasizing the cylindrical nature of the planet over which the tri-jet presently arced. "Tomorrow," seemingly eager to unleash its force, streamed through the gradually-enlarging fissure marking the demarcation line between the 24-hour cycle's two modes, its light intensifying and transforming the black, nocturnal doom of Siberia into a cold, partially habitable purple and ultimate dark, pre-dawn blue. The amount of humanity awakening to such light below in the vast wasteland had undoubtedly been infinitesimal. The sun, appearing a red, liquid mercury immersed in a gray-black sea, slowly triumphed over night, its upper, head-like rim becoming distinguishable as it shyly revealed the rest of its body, illuminating the ice-capped, corrugated crust of the Russian mountains covering the area immediately below the fuselage. Initially seeming to float in a dark-brown sea, they became independently distinguishable as the sun stretched its floodlighting rays, like pointing limbs, toward them.

Passing over snaking, copper-reflecting rivers, Flight 914 consumed the two hours, 11 minutes remaining on its flight plan.

Aromas of brewing coffee enticed the groggy, mostly-sleeping passengers from nocturnal slumber in the cabin, a process only partially augmented by breakfast-precedent hot, perfumed towels. The meal itself had included orange juice, a three-egg omelet filled with creamed spinach, thick slices of Danish ham, assorted rolls, Swiss black cherry preserves, Finnish cheese spread fondue, cream wafers, and coffee or tea.

Banking on to a southeasterly heading with the aid of its inboard ailerons, the MD-11 had, after virtually the duration of its cruise, departed Soviet air space for the first time over snow-dusted, chocolate-brown ridges whose peaks had been gently grazed by funnels of vapory mist, following them to the coast and the morning sun-reflected, copper surface of the Sea of Japan. One hour, 23 minutes had remained to Tokyo.

Motionlessly suspended above the water's glass-like surface, it cruised past the silver peak of Mount Fuji, now maintaining an almost due south, 180-degree heading. Banking left over cumulous patches, it forged its final link to Japan, with its time-to-destination having unwound to the 40-minute mark.

The ridges defining Honshu Island appeared ahead.

Tokyo had been reporting clear skies and 20-degree Celsius temperatures.

Traversing the coast over Niigata, the MD-11 had reached a position directly northwest of its destination, with 25 minutes remaining on its flight plan, disengaging itself from its aerial plateau for the first time in almost nine hours by means of the cockpit-selected "NAV" and "PROF" modes.

Induced into a nose-down, slipstream-increasing descent profile, Flight 914 traced the coastline before briefly passing out over the whitecapped Pacific, now ATC-vectored into a series of three right banks. Automatically guided, the aircraft reduced speed to 250 knots as it had transited the 10,000-foot speed restriction, adhering to its Standard Terminal Arrival Route (STAR), propelled by its three massive turbofans whose N1 tachometers had registered almost-stationary, 34-percent readings.

An air traffic control-requested speed reduction, to 200 knots, had, according to the speed tape, required an initial trailing edge flap extension, to 15 degrees.

As the aircraft had sank over brown, tan, and green geometric-patterned farmland on its final approach heading of 340 degrees, the captain had selected the Approach/Land tile, the autoland system armed for an instrument landing system (ILS) approach and poised to capture the glideslope and localizer. The Approach page of the MCDU, yielding landing weight, runway, barometric pressure, and final flap setting speed readings, listed the following for RJAA, the ICAO four-letter code for Tokyo-Narita: a 208-knot "clean" speed, a 158-knot flap extension speed to the 28-degree position, a 161-knot approach speed with 35 degrees of flap, a 158-knot V-reference speed, and a 150-knot touchdown speed.

Sporting significantly increased wing area with leading edge slat and 35 degrees of trailing edge flap extensions, the blue-trimmed Finnair MD-11, projecting its tricycle undercarriage like four outstretched claws, conducted its final approach over the Narita suburbs in the flawlessly-blue morning, passing over the runway threshold. Sinking toward the concrete, during which time altitude calls had been computer-generated, the widebody tri-jet had been pitched into a seven-degree, nose-high flare, retarding its authothrottle to idle at 50 feet and permitting ground effect to cushion its main gear contact. Manually throttled into its reverse thrust mode, it had unleashed its upper wing surface spoilers, their handle having been moved from the retract (RET) setting through the "1/3," "2/3," and "FULL" marks as the aircraft decelerated. The nosewheel thudded on to the ground.

Taxiing to Satellite Four of Narita International Airport's South Wing, the aircraft moved into its Gate 44 parking position at 0855, local time, ending its intercontinental flight sector and completing the circular pattern of nosed-in widebody airliners comprised of an Austrian Airlines A-310-300, a Japan Air Lines 747-200B, a British Airways 747-400, an ANA 747-200B, a Northwest 747-200B, and a Swissair MD-11.

III

Initial MD-11 service had not always been so routine. Indeed, the aircraft had demonstrated gross weight and drag increases far in excess of performance projections, resulting in payload and range deficiencies, and Robert Crandall, then American Airlines' CEO, had refused to take delivery of the type, substituting an existing DC-10-30 on the San Jose-Tokyo route for which it had been intended. A series of performance improvement packages (PIP), targeting the shortcomings, had ultimately remedied the situation.

By January 1, 1996, 147 MD-11s had been delivered to 24 original customers and operators who had collectively engaged the aircraft in an 11.6-hour daily utilization, experiencing a 98.3-percent dispatch reliability.

Aside from the initial passenger MD-11, several other versions, although in very limited quantities, had been produced.

The MD-11 Combi, for example, had featured an aft, left, upward-opening freight door, permitting various percentages of passengers, from 168 to 240, and cargo, ranging from four to ten pallets, to be carried on the main deck, while lower-deck space had remained unchanged. With a 144,900-pound weight-limited payload, the aircraft had a maximum range of between 5,180 and 6,860 nautical miles.

The MD-11CF Convertible Freighter had featured the main deck door relocated to the forward, port side. Martinair Holland, launch customer for the variant in August of 1991, had placed four firm orders and one option for the type.

The MD-11F, with a 202,100-pound payload, had been a pure-freighter without passenger windows or internal facilities ordered by FedEx, while the MD-11ER Extended Range, launched in February of 1994, had featured a 3,000 US gallon fuel capacity increase carried in lower-deck auxiliary tanks, a 6,000-pound higher payload, a 480-mile greater range, and a new maximum take off weight of 630,500 pounds. World Airways, selecting the Pratt and Whitney PW4462 engine, and Garuda Indonesia, specifying its General Electric CF6-80C2 counterpart, had placed the launch orders.

Dwindling sales, the result of the design's initial performance deficiencies, American Airlines' reputation-damaging public criticisms, order cancellations, and competition from the Airbus A-340 and Boeing 777, had forced McDonnell-Douglas to write down .8 million for the program in 1996 and by the following year, after McDonnell-Douglas's merger with the Boeing Commercial Airplane Company, it had no longer been feasible to continue its production. The original Douglas Aircraft Company Building 84, located at Long Beach Airport and incubation point for all McDonnell-Douglas DC-10 and MD-11 widebody tri-jets, had hatched its 200th and last MD-11, a freighter, for Lufthansa Cargo, in June of 2000, and the aircraft, towed across the road to the runway, bore the title, "The perfect end to a perfect era."

The complete production run had included 131 MD-11P Passenger versions, five MD-11C Combis, six MD-11CF Convertible Freighters, 53 MD-11F Pure-Freighters, and five MD-11ER Extended Range variants.

The figures, added to the 446 DC-10s built between 1971 and 1988, had resulted in a total of 646 tri-jets having been produced.

Although McDonnell-Douglas had studied several stretched, re-engined, and rewinged MD-11 successors designated "MD-12s," including a double-decked, quad-engined, A-380-resembling configuration, these ambitious proposals had exceeded the value of the manufacturer itself, and when Taiwan Aerospace had withdrawn financial support for the definitive version, which had reverted to a tri-jet design with an advanced wing, the three-engined widebody, tracing its lineage to the original DC-10, had finally ended, leaving the increasing number of passenger-converted airframes into freighters to carry their pedigrees into the early-21st century.


The McDonnell Douglas MD-11

Dyson Pet Hair Vacuum This Instant Saving Michael Kors Camo Bag Possini Lamps Clearance Sale

Friday, December 2, 2011

The Boeing 757

!±8± The Boeing 757

I

Increasing demand on existing Boeing 727 routes, which often eclipsed the capacity of even the stretched, -200 series version, coupled with advanced technology, dictated the need for either a larger variant of this venerable tri-jet or an altogether new design.

The first attempt, adopting the former approach, had featured a fuselage sufficiently stretched to accommodate 189 passengers and three refanned, higher-capacity Pratt and Whitney JT8D-217 engines, each developing 20,000 pounds of thrust. Designated the 727-300B, it first appeared at the 1975 Paris Air Show in model form. Despite initial interest from United Airlines, carriers had felt that it needed quieter, still-more advanced powerplants.

A fundamental redesign, retaining the 727's nose, forward fuselage, and t-tail, and designated "7N7," featured a further fuselage stretch and a new technology wing, mated, like the much smaller 737, to two pylon-mounted engines, of which the Pratt and Whitney JT10D-4, Rolls Royce RB.211-535, and General Electric CF6-32 had then been considered. Although it had been intended, like its inceptional counterpart, for one-stop transcontinental sectors, its wing contained sufficient fuel tank volume for eventual, long-range deployment.

Because widebody comfort had been well received by passengers on intercontinental routes, one iteration had briefly explored a wider fuselage cross section for twin-aisle, 180-passenger accommodation. The concept would have satisfied two needs: 1). It would have offered increased comfort, and therefore been more competitive with the then-pending Airbus Industrie A-300 on relatively short US domestic sectors, and 2). It would have avoided the excessively long fuselage needed to cater to any future capacity increases, obviating the requirement for long undercarriage struts to maintain proper take off rotation angles.
The envisioned width, however, had been too much of a payoff for these advantages, as evidenced by weak airline interest, since the weight and drag associated with a second aisle and only one more seat abreast had been impractical, and its cross-section, although wider than that of the 7N7, had still been too narrow to accept standard LD-3 baggage and cargo containers.

Reverting to its narrow body studies, Boeing proposed an advanced, large-capacity 727 which, by February of 1978, had featured its nose, cockpit, and fuselage cross-section, but had introduced a new wing and two turbofans for a 170-passenger complement, thus employing much of the commonality of the simultaneously-developed, twin-aisle 7X7 design. Redesignated "757," it would be Boeing's fifth major commercial jetliner to carry the seven-dash-seven model sequencing numbers, after the 707, 727, 737, and 747, all but the last of which had been narrow bodies.

Compared to the 727 it had been intended to replace, it had offered a 15-percent lower fuel consumption, yet its significant wing area inherently fostered weight, range, and capacity increases for any future derivatives.

In order to reduce development costs associated with its 767, the widebody, twin-aisle, twin-engined counterpart initially also intended for one-stop transcontinental routes, Boeing, where feasible, incorporated maximum commonality in the two aircraft and the types therefore shared the same forward nose sections, windscreens, quad-wheeled main undercarriage units, avionics, and flight deck systems. Indeed, the two aircraft, forming a new-generation of advanced narrow and widebody twinjets, would offer a common type rating, augmenting mixed-fleet flying of carriers which operated both types, and even the originally intended, 727-style t-tail had been deleted in favor of the conventional 767, low-wing configuration at the very end of the design phase, resulting in greater commonality with the 767 than the 727 it was intended to replace.

Launch orders, for 21 firm and 24 options and 18 firm and 19 options, were respectively placed by Eastern Airlines and British Airways on August 13, 1978, for Rolls Royce RB.211-535C-powered aircraft. Featuring a 196-passenger capacity in a six-abreast, 34-inch seat pitch configuration, the 757, with a 220,000-pound gross weight, was optimized for 2,000-nautical mile sectors, while an optional, 230,000-pound weight would increase range to 2,500 miles.

Structural weight reductions, which lowered seat-mile costs, were achieved with advanced composite and aluminum alloy construction, the former comprised of carbon-fiber-reinforced plastics used in the engine cowlings, ailerons, spoilers, elevators, and the rudder, and kevlar-reinforced plastics employed in the engine pylon fairings and the fin and tailplane tip fairings. Copper and zinc aluminum alloys were utilized in the wing skins, stringers, and lower spar beams.

The aircraft, in its initial 757-200 version, featured a 155.3-foot overall length.

The aluminum alloy, two-spar wing, whose center section passed continuously through the fuselage, offered a 124.10-foot span, a 1,994 square foot area, and five percent of dihedral, and shared a high degree of commonality with that designed for the 767, its aft-loaded profile delaying Mach drag rise. But it was thinner at its root juncture point with the fuselage and offered 25 as opposed to 32.5 percent of sweepback. Its traditionally higher drag had been counteracted by its standardly intended mission profiles, which, because of their shorter durations, entailed greater percentages of climb and descent cycles. It had a 7.82 aspect ratio, or ratio of length to width.

Lift was augmented by full-span, five-section leading edge slats and double-slotted trailing edge flaps, while roll control was provided by al-speed, outboard ailerons, themselves assisted by five-section spoilers. They could alternatively be deployed as speedbrakes in flight or lift dumpers on the ground, where two inboard spoiler panels could also be used.

Power, provided by two high bypass ratio turbofans pylon-mounted to the wing's leading edge underside, and whose diameter would not have been feasible with the 727's aft fuselage installation arrangement, resulted in bending movement relief.

The Rolls Royce RB.211-535C, the cropped fan version of the 42,000 thrust-pound RB.211-22B developed for the Lockheed L-1011 TriStar, employed composite pod construction to reduce weight and first ran on the 757 on January 23, 1982. The three-shaft, 37,400 thrust-pound powerplant had been chosen by launch customers Eastern and British Airways.

The more advanced RB.211-535E4, incorporating wide chord fan blades, high pressure module increases, and a common exhaust nozzle for the fan and core streams, offered an eight-percent fuel reduction in its cruise mode and a four-point pressure ratio increase, from 23:1 to 27:1, over its earlier -535C version. The 40,100 thrust-pound engine was certified on November 30, 1983 and first flew on the 757 prototype the following February.

The Pratt and Whitney PW2037, originally specified by American Airlines and Delta, had been the aircraft's second, and only other, powerplant. Initially designated JT10D, the two-shaft turbofan, inceptionally envisioned as a 26.700 thrust-pound engine when the program had been launched in February of 1972, had evolved into the current 37,000 thrust-pound turbofan whose high-pressure compressor efficiency had been improved with a smaller compressor coupled with higher core rotational speeds. First flying on the 757 prototype in March of 1984, it was certified for 37,600 pounds of take off thrust and had a bypass ratio of 5.8:1.

Fuel was carried in two wing-integral and one center section tank, with that stored in the outer tanks burned last in order to maintain wing bending movement relief. Capacity was 11,253 US gallons.

The conventional, low-wing tailplane, adopted very late in the 757's development program, facilitated an overall length reduction of 18 feet, yet resulted in a longer cabin than that of the 727 it replaced and improved ground maneuverability. The variable incidence, elevator-equipped horizontal tail, built up of full-span, light alloy torque boxes, had a 542-square-foot area, while the vertical structure, comprised of a three-spar, dual-cell, light alloy torque box, covered a 370 square-foot area.

The tricycle undercarriage featured a dual-wheeled, forward-retracting nose gear strut and two quad-wheeled, laterally-retracting units comprised of Dunlop or Goodrich wheels, carbon brakes, and tires.
The cockpit standardly featured two operating crew and one observer seat, while the cabin, at 118.5 feet long, 11.7 feet wide, and seven feet high, had sported a widebody look with large, Kevlar, individually-closable overhead storage compartments; a sculpted ceiling; recessed lighting; molded sidewalls; and slimline seats.

Numerous class, pitch, and density seating arrangements, again according to customer choice, were available. A 178-passenger complement, for instance, entailed 16 first class seats in a four-abreast, two-two, configuration at a 38-inch pitch and 162 economy class seats in a six-abreast, three-three, arrangement at a 34-inch pitch, while 208 passengers could be accommodated in a 12 first class and 196 economy class configuration, the latter at a 32-inch pitch. Single-class, high-density, and inclusive tour/charter densities, at minimum 29-inch pitches, encompassed 214, 220, 234, and 239 passengers, the latter of which exceeded the 727-200's maximum by 50 passengers and undercut the widebody 767-200's by an equal number.

Cabin access was provided by either three main passenger/servicing doors and two overwing emergency exits on either side or four main passenger/servicing doors on either side.

The two underfloor cargo holds, accessed by starboard side, lower-deck doors, offered 700 cubic feet of space in the forward compartment and 1,090 cubic feet in the aft one.

Boeing 757 systems included Honeywell-Vickers engine-driven hydraulic pumps and four Abex electric hydraulic pumps. An Allied-Signal GTCP331-200 auxiliary power unit (APU) provided ground power for air conditioning, lighting, and engine starts.

Full program approval had been received in March of 1979 and final assembly, like all previous narrow body jetliners, occurred in Renton, Washington, with the first metal cut on December 10 and the first major assembly taking place 13 months later, in January of 1981.

First rolled out on January 13, 1982, or five months after its widebody 767 counterpart, and taking to the skies for the first time on February 19, the 757-200 prototype (N757A) was flown by Test Pilot John Armstrong and powered by 37,400 thrust-pound RB.211-535C turbofans, completing a successful two-hour, 31-minute inaugural sortie, during which it had attained a 250-knot indicated air speed (IAS) before landing at Boeing''s Paine Field Flight Test Center in Everett. Despite having introduced the first CRT display-equipped, two-person cockpit, and having been the first Boeing design to have been launched with a foreign powerplant type, it had demonstrated simple handling characteristics.

The five aircraft used in the flight test program ultimately revealed that, in comparison to the design's original, 1979 specifications, that it had had a 3,650-pound lower operating weight, a 200-nautical mile greater range capability, and burned three percent less fuel.

FAA certified on December 21, 1982, the 757-200, Boeing's longest single-aisle twinjet, entered scheduled passenger service with Eastern Airlines the following January 1 on the Atlanta-Tampa and Atlanta-Miami routes, while British Airways, configuring its aircraft for 12 first and 174 economy class seats, took delivery of the type on January 25 and inaugurated it into service on February 9, from London-Heathrow to Belfast, Northern Ireland.

The first Pratt and Whitney PW2037-powered variant, first flying on March 14, 1984, had been delivered to launch customer Delta Air Lines seven months later, in October, the same month that Eastern received its first, improved powerplant example, fitted with the RB.211-535E4.

So powered, the aircraft, with 186 mixed-class passengers, had a 220,000-pound maximum gross weight and a 198,000-pound maximum landing weight, offering a coincident 2,820-mile range capability, although medium-range versions had a 230,000-pound weight and long-range examples featured 250,000-pound gross weights, in which case 3,820-mile sectors could be flown.

Although maturing DC-9, 727, and 737 routes had conceptionally dictated the need for the 757, its increasing gross weight and, hence range capability, permitted longer, trans- and intercontinental sector deployment, partially in response to rising fuel prices, and it often served, if not replaced, 767-200 services, thus complementing, before usurping, its twin-aisle counterpart. Both Delta and Eastern, for example, operated transcontinental segments from their Atlanta hubs, while USAir mimicked this pattern to Los Angeles and San Francisco from its similar Pittsburgh flight base. Ladeco operated intercontinental service from Santiago, Chile, to Miami and New York, while Canada 3000, Icelandair, and Air 2000 all operated scheduled and chartered transatlantic services.

II

Other than the initial 757-200 passenger version, Boeing offered several subvariants utilizing the same fuselage length and wingspan, although these sold in limited quantities.

The first of these, the 757-200PF Package Freighter, was developed for United Parcel Service (UPS) when it had placed 20 firm and 15 optioned orders for the Pratt and Whitney PW2037-powered aircraft on December 31, 1985. These featured a 134- by 86-inch, upward-opening, hydraulically-actuated main deck cargo door on the forward, left side; a smaller, 22- by 55-inch crew access door; a cargo loading system; a solid, sliding door-equipped barrier between the cockpit and the main deck freight bay; and the deletion of all passenger-related windows, galleys, and lavatories. First delivered to UPS on September 16, 1987, the twinjet, with a 240,000-pound maximum take off weight, offered 6,680 cubic feet of main and 1,830 cubic feet of lower deck volume, permitting up to 15 pallets to be carried in the former passenger space.
A modified version, the 757-200M Combi, retained the passenger facilities of the -200 and the cargo loading elements of the -200PF, enabling three pallets and 150 passengers to be simultaneously accommodated on the main deck. Although it had been available with a 250,000-pound high gross weight, only one, in the event, had ever been ordered, by Royal Nepal Airlines.

A conversion program, developed by Pemco Aeroplex in 1992, enabled carriers to modify existing passenger aircraft to mixed, quick-change, or all-cargo variants, with an 11,276 US gallon fuel capacity and maximum weights those of the -200PF.

The only military version, the C-32A, had been ordered by the US Air Force to replace its fuel-thirsty, outmoded, quad-engined VC-137s, and it had featured a 45-passenger interior. First flying from Renton on February 11, 1998, the aircraft, ultimately comprising a fleet of four, had been operated by the 89th Airlift Wing at Andrews Air Force Base in Maryland.

III

A representative, transatlantic 757-200 flight, operated by Icelandair from New York-JFK to Reykjavik, Iceland, is forthcomingly illustrated.

The aircraft scheduled to operate the daily, evening departure to Iceland, registered TI-FIH, had been powered by 40,100 thrust-pound Rolls Royce RB.211-535E4 turbofans and configured for 22 four-abreast, two-two, Saga business class, winged- and footrest-equipped seats and 167 six-abreast, three-three, economy class seats, all covered with subdued, blue upholstery. The 250,000-pound, high gross weight aircraft, with an 8,800-pound average cargo capacity, offered a 3,900-mile range.

Pushed back from Gate 21 at JFK's now-extant International Arrivals Building at 2050 abreast of a massive Korean Air 747-400 after a sweltering, 90-degree, early-summer day, the blue-trimmed, long-fuselaged 757-200, somehow reminiscent of the DC-8-63s it had replaced, but with only half the number of powerplants, was rendered an autonomous entity after towbar disconnection amidst the black dusk highlighted by the glow tracing the clouds on the western horizon.

The two-person, transitional-technology cockpit featured both the traditional analog dials and six advanced cathode ray tube (CRT) displays, the former comprised of an airspeed indicator, an altimeter, a vertical velocity indicator, a clock, and standby flight instruments, while the latter consisted of the electronic flight instrument system (EFIS), two electronic attitude and direction indicators (EADI), and two engine indication and crew alerting systems (EICAS), the latter located on the center panel. The electronic flight instrument system, subdivided into the attitude director indicator (ADI) and the horizontal situation indicator (HIS), provided aircraft attitude and positioning information by means of the CRT displays in seven colors.
The attitude director indicator, specifically, provided aircraft attitude and pitch and roll data, along with ground speed, autopilot, autothrottle, and fight direction modes, operating in conjunction with the horizontal situation indicator, which itself yielded aircraft track, wind speed and direction, lateral and vertical deviations, and waypoint estimated times, and could be used in four basic modes. The map mode, the first, generated weather radar returns in several scales, while the VOR mode provided the aircraft's position relative to its selected VOR course. The ILS mode yielded airplane relationship relative to its ILS localizer and glideslope, and the plan mode, the last of the four, displayed the desired portion of the flight plan with north located at the top of the screen.

The flight deck otherwise featured the standard control yokes; a center console between the pilots sporting the throttles, the flap lever, and the speedbrakes; and a console behind it with communication and navigation instrumentation.

Engine starting was achieved by turning the respective turbofan's roof panel-located rotary ignition switch to one of its four start modes-"GRN," "FLT," "AUTO," or "CONT"-after which the switch on the quadrant behind the throttles was flipped to channel fuel, while the required air to initiate fan rotation emanated from the tailcone-mounted auxiliary power unit. Powerplant parameters, displayed on the upper, center CRT, included engine pressure ratio (EPR), fan speed (N1), intermediate rotor speed (N2), high-pressure rotor speed (N3), and oil temperature, oil pressure, and oil quantity.

The flight plan and waypoints had already been loaded before initial pushback.

A gentle throttle advance, after clearance from ground control, preceded the twinjet's taxi, lateral movements made with the aid of the nosewheel steering tiller on the captain's left side and ground velocity indicated by the EADI.

Third for take off, the 216,000-pound 757-200, operating as Flight FI 614 and monitoring the tower on a frequency of 119.1, was instructed to follow the United 767-300 to Runway 13-Right, the green light taxiway centerline progressively consumed by the nose wheel as the aircraft moved toward the jewel light-glittering Twin Towers of the World Trade Center on the horizon.

Once centered on the runway, the aircraft was instructed, "Icelandair 614, cleared for take off, Runway 13-Right. Caution wake turbulence from United 767 heavy." Initiating spool-up of its two 40,100 thrust-pound Rolls Royce turbofans, it restrained its forward movement with the aid of its toe brakes, before depressing its thrust switch and unleashing itself into a lengthy, engine life preservation roll at reduced throttle settings and attaining initial control by means of its nose wheel until the rudder became effective at about 50 knots. The green engine pressure ratio, exhaust gas temperature, fuel flow, N1, N2, and N3 indications, pinnacling on the CRT display, affirmed air- and fuel-generating thrust.

Ground speed calls commenced at 80 knots, the aircraft accelerating through its V1 velocity of 162. Horizontal stabilizer-leveraged into an eight-degree, nose wheel-disengaging rotation, the 757 divorced itself from the concrete by means of its now lift-generating wings, retracting its tricycle undercarriage and engaging its vertical pitch mode as it climbed through 200 feet at a 175-knot, 15-degree attitude.
The exhaust gas temperature and fan speeds respectively registered 157 and 917.

Pursuing its standard instrument departure (SID), the aircraft aileron-nodded into a left bank over the Belt Parkway into dusk, surmounting the gold, green, orange, and white light splotch, like iridescent paint poured atop a black canvas, of Queens, contacting New York Departure on 126.8.

Climbing through 500 feet, it engaged its autopilot in order to control lateral navigation and rate of ascent, retracting its double-slotted trailing edge flaps from the five-degree position.

Ascending though 3,400 feet, it was instructed to pursue a 060-degree heading and to climb and maintain 11,000 feet. Crossing Long Island on a diagonal track, it assumed a 6,000 foot-per-minute climb at a 220-knot airspeed, the cockpit becoming increasingly encased in slipstream. The climb checklist was completed.
Further instructed to climb and maintain 17,000 feet, Flight 614 plunged through a smoky cloud deck toward Connecticut, surmounting its misty top at 24,000 feet where the last remnant of the icy blue sky had been temporarily floodlit by lightning flashes.

Seemingly caught in a black, vaporous, turbulence-incubating void, the slender, narrow body fuselage, propelled by its wide diameter, life-providing engines, settled into its assigned plateau at flight level 350, bordered off its port wing by a line of arctic blue over Portland, Maine. The VNAV was engaged.

Dinner, detailed by the "Saga Business Class Menu" and preceded by a selection of aperitifs and spirits, included "pate diplomat" and jumbo shrimp on a bed of lettuce with fresh lemon and cocktail sauce; seafood in Pernod saffron sauce au gratin or filet of veal in mushroom cream sauce served with tortellini, green beans, and carrots; a selection of red and white vintage wines; a bread basket with Icelandic butter; Bel Paese soft Italian cheese, slices of gouda, crackers, red grapes, and walnuts; cheese cake in raspberry sauce; coffee; and French hazelnut-filled bonbons.

Caught in the black, referenceless void as it pursued its northeasterly, transatlantic track, the intercontinental Boeing 757 had traced its invisible path over St. John, New Brunswick; the Gulf of St. Lawrence; and Goose Bay, Labrador, before departing the North American continent over the foreboding ocean, the only light now visible outside the cabin the reflection of the flashing, under-fuselage beacon on the port engine cowling.

Because of the sun's northern hemisphere location, however, day appeared quickly, at 0340 Iceland time, or 2340 New York time, in the form of a thin, barely perceptible line of cold, dull blue which separated the night sky above from the black, indistinguishable ocean surface and the smoky, slab-like layers of cloud below. That line represented the horizon. Somewhere, beyond the left wing, lay the tip of Greenland. The blue line intensified.

Dawn's subsequent chartreuse glow, piercing the cloud layers with fiery intensity, transformed the sky into a series of dull red and copper streaks, floodlighting the arctic snow-resembling cumulostratus cloud deck which now became visible beneath the engine pylon-supporting wings.

Initiating its automatic landing, aircraft TI-FIH settled into a power-reduced, 3,500-foot-per-minute descent, transitioning through 32,000 feet as its airspeed indicator inched beyond the 300-knot mark. Engine parameters, varying according to powerplant, included an engine pressure ratio of 096, a fan speed of 390, and an exhaust gas temperature of 307. Landing weight, after enroute fuel burn, had been calculated as 180,000 pounds, or well below its maximum.

Bowing toward and penetrating the white and gray, turbulence-producing cloud tendrils at 16,000 feet, the twinjet bored through the obscurity with its bullet nose, now assuming a 1,800 foot-per-minute descent rate. In order to adhere to the 10,000-foot speed restriction, the airspeed was set for 250 knots and the altimeter for 2,000 feet.

Descending through 9,000 feet at a shallow, 500 foot-per-minute rate, the captain clipped the ILS Approach Chart to Keflavik International Airport's Runway 20 to his control yoke, tuning into the automatic terminal information service (ATIS) and noting cloud cover, rain, and a temperature of plus nine degrees Celsius for our arrival.

Penetrating gray density on a 089-degree heading, the aircraft descended through 2,900 feet, at which point the altitude alert light illuminated, indicating imminent approach of the previously-set 2,000-foot limitation. Indicated air speed (IAS) was now dialed to the "215"-knot mark.

Maximum trailing edge flap extension speeds, according to the cockpit placard, indicated 240 knots for one degree, 220 for five degrees, 210 for 15, 195 for 20, 190 for 25, and 162 for 30.

The EHSI display, changed to the expanded ILS mode, yielded weather and traffic data, and the localizer captive mode button was activated.

Shedding the obscurity at 2,000 feet, the 757 emerged over the navy-gray, silver-capped Atlantic, briefly arresting its descent and leveraging into a right bank toward a 141-degree heading and the tip of Iceland. The indicated air speed was dialed to the 180-knot setting.

Extending its double-slotted flaps to the five-degree position as airspeed bled off to the 200-knot mark, Flight 614 maintained a 201-degree final approach heading.

The undercarriage lever, lowered at 180 knots during review of the Final Approach Checklist, had been followed by incremental flap extensions, to the 20- and finally 30-degree positions, the latter, coincident with a noted, nose-down trim, at a 158-knot airspeed. Needled by rain, the aircraft approached the red and white, runway-threshold lights, beyond which the white touchdown lines could be seen through the low-lying cloud sheaths.

Passing over the green, brown, and gold moss-carpeted lava fields and the multi-colored roofs of Keflavik, the 757-200 descended through the 1,000-foot level at a 500 foot-per-minute rate, its VREF speed pegged at 143 knots, and closed the gap to Runway 20 amid a progressive flare and automatic altitude calls: "100...50...40...30...20...10."

Thudding on to the concrete with its quad-wheeled, outstretched main undercarriage units, the twinjet rebowed earthward until its nose wheel had made equal contact with the white light-centered strip, its thrust reverser and speedbrake handles already armed.

Ground speed calls, mimicking those transmitted during the flare, ensued: "80...70...60...50," at which point the reverse thrust mode was deactivated and the concrete barely moved beneath the cockpit windows.

Turning off the active runway, now with the aid of the nose wheel steering tiller, the long, narrow body twin, somehow having assumed the mistaken identity of an intercontinental jetliner, taxied to Gate One next to an Icelandair 737-400 registered TI-FIB as the wand-instructing marshaller grew in size until he stood only inches from the nose, where the parking brake was engaged and the accordion-like jetbridge was extended to the second, port door.

IV

Increased demand on maturing 757 routes, coupled with the design's inherent stretchability, resulted in the type's first, and only, dimensionally divergent version, which offered ten-percent lower seat-mile costs and increased its passenger capacity and underfloor cargo volumes by, respectively, 20 and 50 percent.

First announced on September 2, 1996, after German charter carrier Condor Flugdienst had placed an order for 12 firm and 12 optioned aircraft, the type, designated "757-300," featured a 23.4-foot fuselage stretch, comprised of a 13.4-foot plug ahead of the wing and a ten-foot plug behind it, producing a new, 178.7-foot overall length. The world's largest, single-aisle twinjet, eclipsed only in length by the quad-engined DC-8 Super 60 series, it could accommodate 289 single-class, six-abreast passengers at a 29-inch pitch, although a typical mixed-class arrangement more standardly entailed 12 first class, four-abreast seats at a 36-inch pitch and 231 economy class, six-abreast seats at a 32-inch pitch, all in the elongated, 141.9-foot-long, wide-look cabin modeled after that of the Next Generation 737. Lower-deck volume equally increased-to 1,071 cubic feet in the forward hold and 1,299 cubic feet in the aft hold.

In order to cater to the increased stresses created by the longer fuselage, strengthening occurred on the wings, high-lift device, engine pylons, and undercarriage, and a tailskid ensured protection during excessive rotation angles.

Still powered by two Rolls Royce RB.211-535E4 turbofans, the aircraft had a 240,000-pound maximum take off weight and a 2,055 nautical mile range with 243 passengers.

The 757-300 prototype, NU701 and the 804th aircraft built, was first rolled out in Renton, Washington, on May 19, 1998, and took to the skies for the first time three months later, on August 2, completing a successful, 2.5-hour flight in which it attained a maximum, 250-knot indicated air speed and 16,000-foot altitude. Employed in the initial airworthiness and basic controllability realm of the flight test program, it explored flutter, stalls, stability, and control, and demonstrated the need for vortex generator installation on the leading edge of the outboard flap to improve stall characteristics.

Two other airframes, NU721 and NU722, permitted completion of the program after 356 flights collectively totaling 912 hours, and led to FAA certification, for 180-minute ETOPS sorties, on January 27, 1999, concluding the shortest, design-to-production cycle of any previous Boeing derivative, which had spanned 27 months.

Condor inaugurated the type into revenue service two months later, on March 19.

Improvements to existing 757-200s and -300s were attained with the Aviation Partners Boeing Blended Winglet Retrofit Program. Winglets, featuring large radii and smooth chord variations in transition sections, avoid drag-producing vortex concentrations and provide optimum aerodynamic loading, resulting in smaller wing tip vortices than either straight wing or even conventional winglet systems with angular transitions produce.

The retrofit, which carried a system weight of 1,320 pounds, entailed outer skin and rib replacement, in-tank stringer reinforcement, lower cover fastener replacement, leading edge flap vortex generator additions, and new external position and anti-collision light installation.

The system, increasing wingspan from a former 124.10 to a current 134.9 feet, yielded numerous economic and performance benefits, including an average annual, per-aircraft fuel savings of some 300,000 US gallons.

The first eight-foot, two-inch winglet-equipped 757, a -200 series aircraft belonging to Continental Airlines, first flew on March 9, 2005 from Everett, Washington, and today the program qualifies as a resounding success.

V

On October 18, 2004, the 1,050th-and last-Boeing 757, an original-length -200 series, rolled out of the final assembly plant in Renton and was delivered to Shanghai Airlines of China the following year.

The aircraft, having been designed as a larger-capacity, twin-engined, advanced counterpart to the 727, and as a smaller-capacity, narrow body complement to the simultaneously-developed 767, for one-stop transcontinental routes, uniquely filled two markets and hence created one of its own, ultimately morphing into both higher-capacity and longer-range intercontinental variants. Of the 1,049 aircraft delivered, 913 had been 757-200s, 80 had been 757-200PFs, one had been a 757-200M, and 55 had been 757-300s.

The victim of the recession and the post-9/11 reduction in air travel, the type was mostly usurped by Boeing's own Next Generation 737 and the Airbus A-321, whose smaller passenger capacities more closely matched changing route demands. Although the present 787-8 may provide limited replacement capability on high-capacity 757 sectors, no direct, advanced design counterpart is currently envisioned, with high-end versions of Boeing's own eventual 737 replacement likely to qualify as its successor. Nevertheless, the type represented the pinnacle of single-aisle, twin-engined airliner development, whose payload and range parameters far exceeded those traditionally associated with such a configuration.


The Boeing 757

Belkin Sports Armband Coupon

Tuesday, November 29, 2011

DaVinci Full/Twin Size Conversion Rail Kit- Espresso

!±8± DaVinci Full/Twin Size Conversion Rail Kit- Espresso


Rate : | Price : $89.99 | Post Date : Nov 29, 2011 02:30:32
Usually ships in 1-2 business days

This full,twin size conversion rail kit can be used to convert your Emily, Kalani, or Richmond crib into a full size bed or the Emily or Kalani Mini Crib into a twin size bed. Very easy to assemble in minutes and you will have extended the useful life of your DaVinci crib for many more enjoyable years to come. Non-toxic finish. Made of New Zealand Pine wood from sustainable forests. Measures 76.625"L x 1.75"W x 4.75"H. Features: Easily converts your Emily, Kalani, or Richmond crib into a full size bed or the Emily or Kalani Mini Crib into a twin size bed Lead and phthalate safe Non-toxic finish Extend the useful life of DaVinci cribs well into your child's teenage years Made of solid New Zealand Pine wood from sustainable forests Measures 76.625"L x 1.75"W x 4.75"H 1 year warranty

Schwinn 203 Exercise Bike Decide Now Order Stationary Upright Exercise Bikes Round Pillow Grand Sale

Saturday, November 26, 2011

Dillon Twin Platform Bed w/Slat Pack

!±8± Dillon Twin Platform Bed w/Slat Pack

Brand : Lea | Rate : | Price : $282.04
Post Date : Nov 26, 2011 16:25:40 | Usually ships in 1-2 business days


Dillon is constructed using pine solids and veneers with a distressed brown cherry finish. The hardware is a recessed metal pull in a gunmetal grey color finish, adding to the overall casual appeal. The design features thick drawer fronts, heavy top panels and framed end panels accented with a bead board motif that is also found on the beds. Whatever your room requirements are, Lea Furniture has the bed that fits your style and room.

More Specification..!!

Medela Pump In Style Dual Breast Pump Buy Online

Thursday, November 24, 2011

Bunk Bed Styles

!±8± Bunk Bed Styles

If you're looking to purchase bunk beds for your children, then now is a great time to see what's available. Nowadays technology has led to many different types and styles of bunk bed being available on the open market. With the vast amount of different styles you can easily find one to fit into your children's room, or you may choose to find décor for the room to match a new bunk bed. Maybe when you were young you had a bunk bed and remember how fun it was to have one and want to pass those memories on to your children so they enjoy having a bunk bed as much as you did, whilst saving valuable space in your children's bedroom.

Bunk Beds in White
The easiest colour to fit into a bedroom is white; it works with just about any theme. The high quality paint used in the construction to give it a valuable shine means that it lasts for a considerable amount of time and if anything is spilt on it, it's very easy to clean. So if you're looking to brighten up your children's bedroom or simply get a standard bunk bed, white is a great choice for any room to bring a fresh atmosphere into it.

The Futon Bunk
A futon bunk bed is a great idea for a children's room, now only do they save space but it consists of a bed on top of a futon sofa. So not only will they have a great place to sit with their friends, but also a bed, and at no extra cost of space. These are also available in a variety of colours and frames so you will always find one to match any bedroom.

The Natural Maple Bunk Bed
Natural maple bunk beds are perfect for any bedroom. They are made in such a way that they have the strength to withstand the harsher duties it must perform to that of a standard bed, children often play on their beds to the maple bunk beds are prepared for the leaps and jumps likely to occur with children. They also look stunning as a centre-piece of any bedroom.

A Twin Over Full?
If your children have a fair age difference, then the eldest one may require a larger bed, this is where a twin over full will come in perfectly. The arrangement means that you save plenty of space in the children's bedroom but at the same time they have plenty of space to sleep. A twin over full is literally a twin bed over a full size bed, arranged in such a way that it will fit perfectly into most bedrooms and giving the space for both children to sleep comfortably.

Here we have covered just a few types of bunk bed available to you. There are many more kinds but the types above are very affordable and easily setup. Be sure you shop around and test out the bunk bed you choose with your children and be sure to get the correct mattress types to provide your children with the comfort and support they need to get plenty of sleep and grow healthily.


Bunk Bed Styles

Good Star Trac Exercise Bike New Korg Ma30 Puff Pastry Tart Recipes Compare

Sunday, November 20, 2011

Cedar Lake Twin over Queen Log Bunk Bed from LogFurniturePlace.com | Cabin Bunk Beds

Jason with JHE's Log Furniture Place gives a closer look at our Cedar Lake Twin over Queen Log Bunk Bed. This rustic bunk bed features all log construction to ensure maximum strength and stability. Because we use log supports instead of wooden slat supports our log bunk beds can support more weight making log cabin bunk bed the perfect choice for your hunting cabin, rental cabin, or your children's room. The natural character in the aged cedar logs gives the log bunkbed a true beauty. Come find your perfect log bunk bed at www.LogFurniturePlace.com

Norelco 8140 Order Now Amana Gas Range Discount Comparison Stop Snore Device


Twitter Facebook Flickr RSS



Fran�ais Deutsch Italiano Portugu�s
Espa�ol ??? ??? ?????







Sponsor Links